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Abstract. New-generation radio telescopes have been producing an
unprecedented scale of data every day and requiring fast algorithms to
speedup their data processing work flow urgently. The most data inten-
sive computing phase during the entire work flow is gridding, which con-
verts original data from irregular sampling space to regular grid space.
Current methods are mainly focused on interferometers or have limi-
tations on the resolutions due to the memory wall. Here we propose a
CPU-GPU hybrid algorithm which accelerates the process of gridding.
It employs multi-CPU to perform pre-ordering and GPU to speed up
convolution-based gridding. Several optimization strategies are further
proposed for reducing unnecessary memory access and maximizing the
utilization of the heterogeneous architecture. Testing results demonstrate
that the proposal is especially suitable for gridding large-scale data and
can improve performance by up to 71.25 times compared to the tradi-
tional multi-thread CPU-based approach.

Keywords: Gridding · Heterogeneous computing · Convolution
Data pipeline · Astroinformatics

1 Introduction

In radio astronomy, the original observed data are always irregularly sampled or
under-sampled because of the scan pattern. But visualizing the data on pixel-
based devices requires a regular grid. Hence, gridding is applied to astronomical
data for converting the data from an irregular sampling space to a regular grid
space [20]. Figure 1 shows an example of original astronomical data and its out-
put resampled data. Gridding is one of the phases in the pipeline, which involves
a major data intensive computing [7,14,31]. As many new large radio telescopes
have been established or are under construction, more and more observed data
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are being produced. So they require significant processing capability. For exam-
ple, the Five-hundred-meter Aperture Spherical radio Telescope (FAST) [27,28]
will generate about 40 GB to 1 TB of raw data per hour. But gridding 1 TB of
raw data with a traditional multi-thread method on a 6-core CPU takes about
550 h. To reduce storage requirements and speed up observational cosmology
research, how to gridding in an efficient way has become a great challenge.

(a) Original observed data (b) Regular resampled data

Fig. 1. An example of gridding irregular data to regular space.

(a) Scatter (b) Gather

Fig. 2. Two approaches of implementing convolution-based gridding. (a) Scatter: each
input point (black dot) partially contributes its sampling value to all neighboring out-
put points (rhombuses) within a kernel (dotted circle). (b) Gather: each output point
(rhombus) collects its resampling value of all neighboring input points (green dots)
within a kernel (dotted circle). (Color figure online)

The gridding problem has been studied extensively in both industry and
academia. A number of efficient methods are developed to provide efficient per-
formances, for example, the direct Fourier transform method [21], the back-
projection method [9], the matrix inversion method [33] and so on. In radio
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astronomy, the convolution-based method [29] is the most commonly adopted
method [8]. It divides the sampling plane into an equally spaced linear grid,
then assigns each cell (i.e., output point) a value. For each output point, its
value is calculated by weighted summing all neighboring sampling points (i.e.,
input points). To reduce the calculation, a convolution kernel is often applied
to limit these potential contributors within a relatively small range. As illus-
trated in Fig. 2, scatter and gather are two classical approaches to implement
the convolution-based gridding. A scatter traverses each original input point and
computes its contributions for all output points within the kernel. Vice verse, a
gather traverses each output point, finds all neighboring input points within the
kernel and calculates the final result by convolving these contributors.

Many previous studies have shown that GPU-based gridding would signifi-
cantly outperform the CPU-based counterpart [1,10,17,24,32]. They also found
the data writing race were unavoidable when parallel a scatter, since multiple
input points may contribute to the same output points (e.g., purple rhombuses
in Fig. 2(a)) [23]. Although atomic operations can serialize the updates, the per-
formance of a scatter is still fundamentally bounded by the memory wall. On
the other hand, a gather will never suffer the race condition, because all oper-
ations of an output point are executed by a single thread. Nevertheless, irreg-
ular input points result in the access pattern of each output point being less
predictable. To reduce unnecessary memory access of non-contributing input
points, a gather always requires a pre-ordering process. The pre-ordering will
generate a lookup table by hashing the input points to regular bins. Then each
output point can quickly determine the bins falling within its kernel and access
its neighboring input points. The Hierarchical Equal Area isoLatitude Pixelation
(HEALPix) [13] is a widely adopted spherical division scheme in observational
cosmology [2,11,15,36].

However, existing proposals are not designed for radio interferometers or have
not well considered large-scale data situation such as FAST. To address these
problems, this paper presents a CPU-GPU Hybrid convolution-based Gridding
algorithm, called HyGrid. Our main contributions are summarized as following:

– Firstly, a pre-ordering algorithm is presented to build an efficient HEALPix-
based lookup scheme on CPU with a O(N log(N)) time complexity and a low
memory consumption.

– Then, a gather is further accelerated on GPU with a data layout strategy.
Moreover, thread coarsening is adopted on the situation of large output res-
olution.

– Finally, several cases are feed into HyGrid to verify its validity and feasibil-
ity. The results show that HyGrid can solve the convolution-based gridding
quickly and efficiently. Compared to the traditional multi-thread approach, it
can achieve a speedup by up to 125.81 times on pre-ordering and a speedup
by up to 18.63 times on gather. For thread coarsening, the performance can
achieve 4.64 times improvement by using it compared to the counterpart.

This paper is structured as follows. In Sect. 2, several related works are briefly
discussed. in Sect. 3, there are details about preliminaries and problem descrip-
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tion. in Sect. 4, the HyGrid algorithm is described in detail. In Sect. 5, the test
data and result are provided. Finally in Sect. 6, it is the conclusions and further
work.

2 Related Work

Previous studies related to the convolution-based gridding are introduced and
reviewed on three aspects: (1) GPU-based scatters, (2) pre-ordering and gathers,
and (3) optimization strategies.

Due to the intrinsic data race, proposed scatters mainly focused on avoiding
updating device memory simultaneously. Van Amesfoort et al. [1] developed a
scatter on GPU by assigning a small private grid to each input point. Although
it can avoid data race fundamentally. It limits the resolution of the output grid
and cannot be applied to the latest large radio telescopes. Based on memory
copy, Humphreys and Cornwell [5,6,17] also implemented a scatter for the Aus-
tralian Square Kilometre Array Pathfinder (ASKAP) [16] on GPU. To reduce
device memory access, Romein [32] designed anther GPU-based scatter. For each
antenna pair in a radio telescope interferometer, its sampling coordinates changes
slowly in the sampling space. Hence, using a dedicated thread to iterate over the
sampling trajectories will lead to tiny shifts in the kernel. So the thread can accu-
mulate weighted sums in its register as long as possible and write the sums to
device memory when necessary. Merry [24] further improved Romein’s algorithm
by using thread coarsening [26]. The improved version significantly reduces the
addressing overhead of device memory. However, both methods heavily depend
on the spatial coherence of the interferometers’ data and cannot be adopted by
single dishes.

Proposed gathers are mainly aiming at reducing unnecessary memory access
of non-contributing input points. Edgar et al. [10] designed a gather for the
Murchison Widefield Array (MWA) [37] on GPU. It uses Thrust [3] to pre-order
input points into 24 × 24 bins. Then each output point can only search the
neighboring input points within the bin it falls in and its adjacent eight bins.
Although the pre-ordering leads to an efficient device memory access, the coarse
binning strategy makes that a big part (i.e., 8/9) of searched input points still
cause unnecessary memory addressing overheads and convolving calculations.
Gai et al. [12] presented a gather for magnetic resonance imaging data [18] on
GPU by pre-ordering data with a compact binning method. Winkel et al. [40]
proposed another compact binning method based on HEALPix. Their imple-
mentation is on CPU, called cygrid. It pre-orders astronomical data by using the
C++ STL vector [30] to convert an input-output hash map to an output-input
hash map. For large-scale data, the data layout and the pre-ordering strategy
will significantly increase time overhead and memory consumption. Hence, it is
not suitable for gridding large-scale data.

In addition, researches also focused on improving GPU’s efficiency and allow-
ing synergies between the CPU and GPU. Amesfoort’s scatter [1] accesses the
convolution kernel as a 1D texture and loads common data into shared memory
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for all threads in a block only once. It can efficiently utilize memory bandwidth.
But it is not appropriate for neither large kernels nor varying kernels, because dif-
ferent input points may use an identical convolution kernel. Merry [24] adopted
a trade-off method between thread coarsening and parallelism efficiency. While
Gai et al. [12] improved load balance by partitioning the gridding operators
evenly between GPU and CPU.

3 System Model

3.1 Preliminaries

When applying the FITS World Coordinate System (WCS) [25,39], HEALPix is
suitable to bin the spherical sampling space [4]. Given a grid resolution (denoted
by Nside ∈ {1, 2, 4, 8, · · · }), HEALPix hierarchically subdivides the sphere sur-
face into 12N2

side equal-area pixelization. As illustrated in Fig. 3, all pixel cen-
ters are placed on 4Nside − 1 rings of constant latitudes, and are equidistant in
azimuth (on each ring). Then, these pixels can be simply indexed by moving
down from the north to the south pole along each ring.

(a) Subdivided sphere surface (b) Pixels index in RING scheme

Fig. 3. The HEALPix partition [13]. (a) It is hierarchically subdivided with resolution
Nside = 1 and 2 respectively; (b) 12N2

side pixels are located at 4Nside − 1 isolatitude
rings with resolution Nside = 2.

HEALPix software libraries1 support spherical transformations. For instance,
the WCS coordinates (denoted by (α, β) with α being the longitude and β being
the latitude) of any pixel center (denoted by pix) can be computed by (α, β) ←
Pix2Loc(pix,Nside); the reverse transformation is pix = Loc2Pix(α, β,Nside);
the ring (denoted by rix) to which pix belongs can be calculated by rix =
Pix2ring(pix,Nside); the lowest numbered pixel which is located at rix can be
calculated by pix = Ring2Start(rix,Nside).

3.2 Problem Description

Suppose N input points S = {s1, s2, · · · , sN} are distributed on a sampling
plane, where each input point sn ∈ S is located at coordinates (αn, βn) with a
1 http://healpix.sourceforge.net/.

http://healpix.sourceforge.net/
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value V [sn] representing its sampling value. After dividing the plane into I × J
regular grid cells (denoted by G = {g1,1, g1,2, · · · , gI,J}), where the center of
each grid cell gi,j ∈ G is located at coordinates (αi,j , βi,j), convolution-based
gridding will assign gi,j an resampling value (denoted by V [gi,j ]) and an overall
weighting value (denoted by Wi,j).

Given a weighting function (denoted by w), the convolution kernel of gi,j will
be,

V [gi,j ] =
1

Wi,j

∑

n

V [sn]w(αi,j , βi,j ;αn, βn), (1)

where
Wi,j =

∑

n

w(αi,j , βi,j ;αn, βn). (2)

Here, sn be a contributed input point, w(αi,j , βi,j ;αn, βn) be a weight that sn
contributes to gi,j , Wi,j be the overall weight of all contributors. Wi,j be used
to conserve flux density, because different output points will be influenced by
different contributors in varying degrees. In most cases, w be a radially symmetric
function, for example, a Gaussian kernel with standard deviation σ. Such that,

w(αi,j , βi,j ;αn, βn) = exp [
−d2(αi,j , βi,j ;αn, βn)

2σ2
], (3)

where d be the shortest distance between sn and gi,j measured along the sur-
face of the spherical sky [35,38]. Hence, partial contributions denoted by each
contributor can be concentrated towards the center of the kernel. The chosen of
the radial-symmetric function is beyond the scope of the paper, more detailed
analysis can be found at [19].

4 HyGrid Algorithm

In this section, we present a CPU-GPU hybrid gridding algorithm. To limit the
search space, the algorithm first pre-orders the input points using multi-CPU.
Then the proposal parallelizes the convolution by assigning each output point a
dedicated thread on GPU. It further optimizes gridding using data layout and
thread coarsening.

4.1 Pre-ordering

4.1.1 Ring-Based Lookup Strategy
∀sn ∈ S, given Spix[n] = Loc2Pix(αn, βn, Nside) be the pixel to which sn belong,
rixn = Pix2ring(Spix[n], Nside) be the ring at which Spix[n] be located. Different
pixels may located at the same ring, i.e., rixi = rixj with i �= j. Let rix1 = r1
and rixN = rtotal, we have R = {r1, r2, · · · , rtotal} be a set of rings at which
Spix be located.

Since guaranteeing the output grid image resolution requires a considerable
number of pixels. The rearranged input points (denoted by S

′) will be stored in
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1r 2r 4r3r

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s 16s 17s

1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s 16s 17s

1r 2r 4r3r
1 7 10 17

(a) Pre-ordering strategy

1r lr hr totalr

(b) Searching strategy

Fig. 4. Ring-based lookup table. (a) It sorts input points by their pixels (i.e., boxes
in different colors) and generates a lookup table based on their rings; (b) it searches
the neighboring input points for a given pixel by using the lookup table. (Color figure
online)

a compact way on GPU’s device memory. Hence, we cannot afford to directly
search a pixel among S

′. To address the problem, we propose an efficient ring-
based lookup table (denoted by Rstart). It records the lowest indexed pixels
which are located at each ring. Specifically, Spix[Rstart[k]] be the lowest indexed
pixel in Spix which also be located at ring rk ∈ R. Such that Rstart[k] = n if and
only if rixn−1 < rk and rixn ≥ rk.

Therefore, given pixel pix with rix = Pix2Ring(pix,Nside), the problem of
finding its contributors within a kernel radius (denoted by rad) becomes how to
calculate the rings which are rad distant from rix, where rl = Loc2Pix(αi,j , βi,j−
rad,Nside) and rh = Loc2Pix(αi,j , βi,j + rad,Nside) denote lowest and highest
indexed rings, respectively. Then, for each rk between rl and rh, we can binary
search the lowest indexed neighboring pixel within the range [Rstart[k], Rstart[k+
1]] in Spix. Due to the compact relationship among pixels, the following elements
in Spix will be continuously contributed to pix. Such that, if Spix[n] and Spix[n+2]
are contributors and rixn = rixn+2, then Spix[n + 1] will also be a contributor
with rixn+1 = rixn. So performing lookup only once, we can find all contributors
located at rixn and access them by sequential scanning S

′.
Figure 4(a) shows an example of generating Rstart. In this example, 17 input

points are binned into 9 pixels and rearranged according to the pixels’ indexes
in RING scheme. Then we have Rstart[1] = 1, Rstart[2] = 7, Rstart[3] = 10 and
Rstart[4] = 17. Figure 4(b) illustrates an example of lookup with Rstart.

4.1.2 Pre-ordering Algorithm on Multi-CPU
Given Nside and Spix. The HEALPix-based Pre-ordering Algorithm
(denoted by HpxPreOrdering) applies a parallel block indirect sort algo-
rithm2 to rearrange input points. The sort algorithm is represented by

2 https://boost.org.

https://boost.org
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BlockIndirectSort(Spix, Sval, N) with Sval[n] = n being the sort value. In addi-
tion, our early attempts have shown that the CPU-based block indirect sort
algorithm outperformed GPU-based Thrust [3] on sorting large-scale data.

Details of HpxPreOrdering are described in Algorithm 1. There are two
steps: sorting (Line 1–4) and lookup-table-generating (Line 5–13). In step
1, BlockIndirectSort is performed on multi-core CPU to sort Sval by Spix

in parallel (Line 1), then we rearrange S to S
′ according to the ordered

Sval (Line 2–4). In step 2, the algorithm first computes r1 and rtotal (Line
5–6), then updates Rstart by iterating over R and doing binary search in
Spix (Line 7–13). Here, given a non-decreasing array (denoted by Array),
BiSearchLastPosLessThan(Array, left, right, key) will binary search key
within the range of [left, right] in Array and return an index i satisfying
Array[i] < key and Array[i + 1] ≥ key.

The complexity of HpxPreOrdering is decided by the block indirect sort algo-
rithm, which is O(N log(N)) at the worst time and O(N) at the best time.

4.2 Gather Algorithm on GPU

Algorithm 2 illustrates the GPU-based Gridding Gather (denoted by GPU-
GridGather). The entire computation of V [gi,j ] is executed by a single thread.
The thread iterates from rl to rh for finding all contributors of gi,j and per-
forming Eq. 1 to obtain V [gi,j ] and Wi,j (Line 1–17). For each ring (denoted
by cntRix), the thread calculates its latitude β (Line 2–3) to obtain the lowest
and the highest indexed neighboring pixels (denoted by pl and ph, respectively)
located at cntRix (Line 4–6), where tanRad is the great-circle distance between
(αi,j , β) and pl (or pr). Secondly, the thread binary searches pl in Spix with the
search space restricted by Rstart (Line 7–9). Finally, the thread can sequential
scan S

′ and apply Eq. 1 (Line 10–16).
The calculation of Function GPUGridGathergi,j is actually linear to the

number of contributors, although there exist double nested loops.

4.3 CUDA Optimization Strategy

We further propose two optimization strategies while implementing HyGrid in
CUDA 8.0 [34]: (1) using different device memory types to optimize the data
layout; (2) using thread coarsening to accelerate gather in the situation of the
larger output resolution.

To optimize memory access, the data layout strategy manipulates S and G

in the structure of an array format, accesses the lookup table as a 1D texture
memory, as well as accesses global parameters (such as N , I, J , Nside and so
on) as constant memory. Furthermore, partial convolving results of a thread
are maintained in a register and only flushed to global memory once after all
calculation.

In the situation of a large output resolution, although the same scale of
threads could be generated by GPU processors. But these threads cannot be
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Algorithm 1. HEALPix-based Pre-ordering Algorithm: HpxPreOrdering
Parameter: Nside

input: S, Spix, Sval

output: S
′, Spix, Rstart, r1, rl, rh

Initialize: S
′ ← ∅, Rstart ← ∅

� sort input points
1: BlockIndirectSort(Spix, Sval, N)
2: for n = 1 to N do
3: S

′[n] ← S[Ssix[n]]
4: end for

� generate lookup table
5: r1 = Pix2Ring(Spix[1], Nside)
6: rtotal = Pix2Ring(Spix[N ], Nside)
7: Rstart[0] ← 1, idx = 1
8: for cntRix = r1 + 1 to rtotal do
9: pix = Ring2Start(cntRix, Nside)

10: cntIdx = BiSearchLastPosLessThan(Spix, idx, N, pix)
11: Rstart[cntRix − r1] = cntIdx + 1
12: idx = cntIdx
13: end for

Algorithm 2. GPU-based Gridding Gather: GPUGridGather
Parameter: Nside, rad
input: S

′, Spix, r1, Rstart, r1, rl, rh
output: Wi,j , V [gi,j ]
Initialize: Wi,j = 0, V [gi,j ] = 0

1: for cntRix = rl to rh do
� iterate each neighboring ring

2: pix = Ring2Start(cntRix, Nside)
3: (α, β) ← Pix2Loc(pix, Nside)
4: tanRad = Rad2Tan(βi,j , β, rad)
5: pl = Loc2Pix(αi,j − tanRad, β, Nside) � lowest pixel
6: ph = Loc2Pix(αi,j + tanRad, β, Nside) � highest pixel
7: lIdx = Rstart[cntRix − r1]
8: rIdx = Rstart[cntRix − rl + 1]
9: n = BiSearchLastPosLessThan(Spix, lIdx, rIdx, pl) + 1

� calculate Equation 1
10: while Spix[n] ≤ ph do
11: if d(αi,j , βi,j ; αn, βn) ≤ rad then
12: Wi,j = Wi,j + w(αi,j , βi,j ; αn, βn)
13: V [gi,j ] = V [gi,j ] + w(αi,j , βi,j ; αn, βn) ∗ V [s′

n]
14: end if
15: n = n + 1
16: end while
17: end for
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executed simultaneously due to the limited processing capability on each GPU
processor. We also notice that output points located at the same ring usually have
similar neighboring rings. Accordingly, we apply thread coarsening to collaborate
the computations of several continuous output points located at the same ring
into one thread. In particular, each thread executes GPUGridGather only once
and its corresponding output points share the same pl, determined by the “first”
output point. Furthermore, partial convolving results of different output points
would be remained on the different registers. The performance of the thread
coarsening strategy will depend on the number of output points calculated by
each thread, called coarsening factor (denoted by γ).

5 Benchmarking

Let output resolution (denoted by Or) be the width of each output point. For
a given sampling field, a small output resolution indicates a big I (or J). For
instance, let Or = 200′′ and the sampling field be 5◦ × 5◦, we have I × J =
(5◦/200′′)× (5◦/200′′) = 90× 90. Several experiments are conducted to evaluate
the performance of HyGrid with different N and Or. To better illustrate the
performance of HyGrid, we compare it against cygrid [40], which is one of the
fastest gridding implementations to the best of our knowledge. The experimental
environment is shown in Table 1. Specifically, cygrid and HpxPreOrdering are
executed on a 6-core CPU with 12 threads per core. GPUGridGather is executed
by I ·J/γ threads on GPU with each thread being responsible for γ output points.

Table 1. Experimental environment

Brand Model Cores SMs Tflops RAM
(GB)

Freq.
(GHz)

Cache
(MB)

Thread
pre core

GPU NVIDIA Tesla K40 2880 15 1.4 12 - - -

CPU Intel Xeon E5-2620 6 - - - 2.5 15 12

5.1 Performance vs. Input Size

Figure 5(a) illustrates the performance of gridding as a function of N , where the
sampling field is 5◦ × 5◦ with Or = 600′′ (i.e., I × J = 90 × 90) and γ = 1.
The results indicate that HyGrid outperforms the multi-thread cygrid with a
speedup of 125.81 times on pre-ordering, a speedup of 18.63 times on gather and
a speedup of 71.25 times on the gridding process overall. As N increasing, the pre-
ordering strategy of cygrid is strictly limited by the memory wall. The number of
contributors and convolving computations of each thread are also significantly
increased. Thereby, GPUGridGather can obtain higher performance and data
throughput, especially when N > 108.



HyGrid 631

(a) (b)

Fig. 5. The speedup of performance. (a) Gridding a different number of input points
to a 5◦ × 5◦ sampling filed with Or = 200′′ (I × J = 90 × 90); (b) gridding 1.5 × 108

input points to a 5◦ × 5◦ sampling filed with different Or.

5.2 Performance vs. Thread Coarsening

To analyze the efficiency and the feasibility of the thread coarsening strategy,
we select a benchmark model of a fixed N and different Or. Figure 5(b) shows
the performance as a function of Or with 1.5 × 108 input points and a 5◦ × 5◦

sampling field. The results show that the strategy can achieve significant perfor-
mance improvement even if I (or J) is very large. Compared to executing GPU-
GridGather with γ = 1, we find that thread coarsening can achieve a speedup
of 2.28 times with γ = 2, Or = 30′′ (I × J = 600 × 600) and a speedup of 4.64
times with γ = 3, Or = 20′′ (I × J = 900 × 900).

We also found that the trade-off between thread coarsening and parallel
efficiency partly depends on the output resolution and the hardware. Hence, γ
should be well-chosen in actual use. For example, a good γ should be 2 when
gridding onto 327×327 (Or = 55′′) output grid cells, while 514×514 (Or = 35′′)
output grid cells prefer γ = 3. In addition, because the shape of the convolution
kernel is actually rectangular in thread coarsening strategy, the experiments
with γ = 4 and 5 may result in “bad” output images. Such that original circular
astronomical sources (as showed in Fig. 1) become rectangular sources after the
gridding process. Therefore, we do not recommend a big γ, although it can bring
about a high speedup of performance.

5.3 Performance vs. Order Degree

In practice, radio astronomical observations are usually taken by using the On-
The-Fly (OTF) observing technique [22], where sampling value and position
information are recorded continuously. Hence, some original astronomical data
should be partial ordered. Some experiments are conducted to demonstrate the
performance at such situation. Figure 6 shows the time overhead ratio of pre-
ordering to gather, when respectively gridding random input points and ordered
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input points. The random data are from the above experiments. The ordered
data is constructed by simulating the OTF observing technique. For random
input data, the results indicate that HpxPreOrdering consumed more running
time compared to GPUGridGather as a function of N or Or. While for ordered
input data, the most time-consuming process is GPUGridGather. Thereby, the
order degree of original data has a big impact on load balance between CPU and
GPU.

(a) (b)

Fig. 6. The time overhead ratio of pre-ordering to gather. (a) Gridding a different
number of input points to a 5◦ × 5◦ sampling filed with Or = 200′′ (I × J = 90 × 90);
(b) gridding 1.5 × 108 input points to a 5◦ × 5◦ sampling filed with different Or.

5.4 Performance in Practice

In addition, the time overhead of using HyGrid (with γ = 3) to gridding 1.7 GB
of ordered (or random) data (nearly N = 1.5× 108) onto a 900× 900 grid image
is within 8 s (or 32 s). Approximately, gridding 1 TB of ordered (or random)
data takes about 1.34 h (or 5.35 h). Accordingly, executing HyGrid on a single
workstation is qualified for small-scale data, while a small cluster is enough for
large-scale data by running multiple HyGrid simultaneously. In order to achieve
a best trade-off between performance and power saving, the number of CPU and
GPU should be well-chosen according to the order degree of input data.

6 Conclusion and Future Work

Due to the irregularity and the large-scale astronomical data, simply transferring
the convolution-based gridding to GPU cannot obtain a good performance. Here
we propose a hybrid approach. First an efficient lookup table based on HEALPix
is introduced in the pre-ordering step. Then a GPU-accelerated gather is imple-
mented by utilizing data layout and thread coarsening in a proper manner.
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Experiments have shown that our proposal provides a significant improvement
in performance, and can be applied in practical data pipelines for both large
interferometer and single dish.

However, current implementation has not yet supported auto-tuning to find
the optimized coarsening factor. Also, there need some improvements in load
balance between CPU and GPU. Future research will mainly focus on extending
the gridding approach to multiple GPUs platform, adapting it to real-time data
stream, as well as integrating it into the data pipeline of FAST.
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