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Abstract An open-loop control algorithm is put forward for continuous paraboloid deformation of the ac-
tive reflector system of the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The method is
based on a calibration database and interpolation in 2D spatial domain and temperature domain, respective-
ly. It is completely independent of real-time measurement of cable nodes so that it has advantage of working
all-weather and no additional electro-magnetic interference (EMI). Furthermore, its control accuracy can
be effectively improved via reasonable layout of the calibrated paraboloids and increasing calibration ac-
curacy. Meanwhile deformation safety is considered via calibration as well. Finally its control accuracy is
also confirmed via site measurements of paraboloid deformations.

Key words: Astronomical instrumentation: methods and techniques — methods: data analysis — methods:
numerical

1 INTRODUCTION

The Five-hundred-meter Aperture Spherical radio
Telescope (FAST), nicknamed “Sky Eye of China,” has
attracted considerable attention thanks to its capabilityto
search the depths of the cosmos. FAST is the largest single
dish and the most sensitive radio telescope with Chinese
own intellectual property. Its main construction and the
installment of instruments were completed in September,
2016, it has since been in the commissioning phase, as
shown in Figure 1.

As a large and complicate telescope, FAST consist-
s of four main systems, including the active reflector, the
feed support, the measurement and control, and the feed re-
ceivers. The active reflector system is used to form 300 m
aperture paraboloid and collect in such huge area very faint
radiation from the sky, which generally determines very
high sensitivity of FAST (Nan 2006; Qiu 1998). It can
be further decomposed as steel structures (the 500 m ring
girder and 50 pillars), a flexible cable-net structure, 4450
reflector elements and 2225 actuators. The flexible cable-
net and actuators are the key units to complete paraboloid
and spherical deformations.

As FAST is observing and pointing to a star, its trajec-
tory needs to be tracked due to self-rotation of the Earth.

Consequently, deformation of the cable-net is a contin-
uous process of switching among a set of paraboloids.
During this process, 2225 actuators have to drive their cor-
responding cable nodes in coordination so that a movable
paraboloid tracking star can be formed at the right posi-
tions and the right time. The shape accuracy of paraboloid
(here a statistical value based on position errors of∼ 700

cable nodes) is required better than 5 mm in root mean
square (RMS). Deformation control is involved in a great
number of nodes and transfer of mass information at a cy-
cle every 0.5 – 1.0 s. This means the controller has to read
continuously the current actuator positions, calculate the
next increments and send them to the corresponding actu-
ators at each control cycle. A close-loop control method
based on laser measurement seems to be a candidate and
it is tried on site because of its large measurement range
(> 300m) and excellent accuracy (∼ 1mm RMS). A to-
tal of 10 Leica laser total stations are available for parallel
measurement to get the coordinates of cable nodes with-
in paraboloid as shown in Figure 2. They are sent to the
controller as feedback information by which the next in-
cremental positions are calculated (Zhu 2012). However,
this method works very slowly in that it takes 30 minutes to
finish a complete measurement, which is much greater than
the required cycle time. This method is also greatly limited
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Fig. 1 Overview of FAST.

Fig. 2 2225 targets for laser measurement of the reflector system.

by weather and electro-magnetic interference (EMI), so it
is not always reliable for a radio telescope.

A new open-loop method is then put forward in this
paper to crack these problems. This method does not pur-
sue real-time position measurement of cable nodes any
longer, so it avoids the risks of timeout, bad weather and
additional EMI. On the contrary, it builds up at first a
database via recording the calibrated standard paraboloid
deformations of the cable-net. The shape of each stan-
dard paraboloid is then measured and adjusted so that it-
s shape accuracy can meet the requirement, so called de-

formation calibration. Each standard paraboloid is tied up
with a group of actuator positions that are recorded in the
database. For a given paraboloid, interpolation can then be
applied in the database to calculate its corresponding actu-
ator positions.

In the following sections the authors introduce first the
configuration of the active reflector system and the char-
acteristics of deformations why the open-loop control is
suitable. Then, some assumptions are put forward in favor
of open-loop control. The detailed algorithm is formulat-
ed with its interpolation accuracy demonstrated in a com-
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putation example. Furthermore, some steps are considered
on structural safety and accuracy improvement. Finally, an
example on site is given.

2 CONFIGURATION

The flexible cable-net structure, as shown in Figure 3, can
be further decomposed as a cable mesh consisting of 6670
main cables and 2225 down-tied cables most of which are
along radial directions vertical to the mesh plane. Each
down-tied cable is connected with a hydraulic actuator
which drives to change mesh shape. It is easy for the con-
troller to read current pressure and stroke of each actuator.
The former indicates status of cable tension that is useful
in monitoring structural health. The latter is closely related
with the current position of cable node, hence regarded as
control reference.

The cable mesh is further partitioned as about 4450 n-
early orthogonal triangles with a reflector element mount-
ing and sliding freely on the plates of cable nodes (Shen
et al. 2010; Zhu et al. 2017; Jiang et al. 2017, 2013). Once
the cable mesh forms a 300 m aperture paraboloid, all the
reflector panels within the aperture fit a close paraboloid
as well. Because the surface shape of reflector element is
a sphere, fitting strategy is studied on its optimal curva-
ture radius (Qian 2007), dimension and position of reflec-
tor element (Gan 2010), or even different surface shape
(Xue et al. 2015). Offsets of real shape deviating from ide-
al paraboloid may exist. Here only the out-of-plane offset,
also called shape error, is taken into account. It is made up
of a group of factors and can be written as

δ =
√
δ21 + δ22 + δ23 + δ24 . (1)

Here the symbolδ1 represents errors of reflector panel
itself, like error of designed shape, manufacturing error,
thermal error, wind-induced deformation and so on. The
symbolδ2 andδ3 represent measurement error and mea-
surement reference error respectively. The symbolδ4 is the
error statistics of positions of∼ 700 cable nodes within
paraboloid aperture.δ1, δ2 andδ3 are constants determined
by panel and laser measurement, with values of 3.8 mm,
2.0 mm and 1.0 mm respectively (Jiang et al. 2019). If the
required shape errorδ is set less than 6 mm,δ4 must be less
than 5 mm according to Equation (1). It is the critical re-
quirement that deformation control of the cable mesh has
to meet.

3 ALGORITHM OF OPEN-LOOP CONTROL

3.1 Assumptions on Open-loop Control

Some assumptions are given as the application base of
open-loop deformation control of the cable-net. First, the

cable-net together with its supporting girder and pillars as
a whole works as an ideal elastic structure. This means
that special structural deformation or shape can be unique-
ly mapped to special load and vice versa. The same status
can be repeated by the structure if the same load is im-
posed. That is to say the structure can remember and recall
previous deformations. This assumption is also verified by
long-term measurement tests of the active reflector system
(Zhu & Zhang 2010). Second, the cable-net’s normal tran-
sition from one shape to another is mathematically contin-
uous. There should be no sudden jump of actuator pres-
sure and actuator stroke on any intermediate status. The
assumption puts it mathematically possible to employ in-
terpolation method. Finally, the continuous deformation of
the structure is so slow during observation that the pro-
cess can be regarded as quasi-static. This assumption is
reasonable in that the maximal actuator speed is less than
0.8 mm s−1 in the tracking mode and 1.6 mm s−1 in the
slewing mode. Hence, the process can be divided into a
group of discrete paraboloid deformations independent of
dynamics.

Based on the last assumption, it is clear that the key
of open-loop control algorithm is how to obtain quickly
and accurately the actuator strokes corresponding to a giv-
en paraboloid deformation. The calculation results are then
set as the object stroke. Their difference according to the
current feedback strokes can be sent to the PLC as the next
execution. The open-loop control algorithm works because
the process repeats for each discrete paraboloid.

3.2 Standard Paraboloid and Zone Discretization

For the description convenience of a paraboloid, three vari-
ables are indispensable, including 2D position of its apex
and the ambient temperature as structural deformation hap-
pens. It can be imagined that all possible positions of
paraboloid apex construct a trajectory sphere. Its curvature
radius is nearly equal to that of the base sphere, as shown
in Figure 4. Of course they share the same spherical cen-
ter. The field angle of the trajectory sphere is 80 degrees,
2 times as the maximal zenith angle designed by FAST.
Hence two independent spherical coordinates, zenith and
azimuth angle, are applied in denoting a paraboloid.

For the convenience of interpolation, a number of stan-
dard or calibrated paraboloids are needed. These standard
paraboloids are set with special apex positions and ambi-
ent temperature. Deformation is known for each of such
paraboloids. That is, the 2225 actuator strokes are calibrat-
ed regarding to the desired shape accuracy. Hence the ob-
ject strokes are related with the object paraboloid deforma-
tion. All of the apexes of these standard paraboloids should
be distributed as smoothly as possible for good interpola-
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Fig. 3 The active reflector system of FAST.

Fig. 4 Trajectory sphere of movable paraboloid.

tion accuracy everywhere. Hence the whole interpolation
domain are partitioned by them as many subdomains, so
called zone discretization, which happens not only in the
spatial domain but in the temperature domain. Because the
spatial domain is different from the temperature domain,
it is advised that the zone discretization should be done
separately. In the former a kind of triangular subdivision
is applied according to standard paraboloids, as shown in
Figure 5. The sphere is meshed by about 2000 spherical
triangles with nearly the same length of 3 arc edges. Each
triangle has six nodes, three of which are triangular apexes
and the other are three edge midpoints. In the latter a set of
discrete temperature points is given.

3.3 Formulation of Interpolation

Corresponding to the discretization strategy, the interpola-
tion algorithm also consists of two steps. A first interpo-
lation in the triangular domain is done while the ambient
temperature is set constant. Then this work is repeated at
each discrete temperature to get a set of intermediates as
the next standard paraboloids. At last interpolation in the
temperature domain is carried out to get the final interpo-
lation results.

3.3.1 Triangular domain

Figure 6 shows an arbitrary spherical triangle,△123, s-
elected from the above subdivision with its three apexes



H. Li & P. Jiang: An Open-loop Control Algorithm of the Active Reflector System of FAST Telescope 65–5

Fig. 5 Discretization mesh based on spherical triangle.

Fig. 6 Interpolation in 6-node spherical triangle.

and three edge midpoints named 1∼6, respectively, each
of which represents an apex of standard paraboloid. Here,
a better interpolation accuracy is anticipated via 6-node
triangle. PointP denotes an apex of arbitrary paraboloid
within the triangular domain. For the convenience of de-
noting the position ofP , a kind of area coordinate, namely
L1, L2 andL3, is introduced in the following equation

Li = Ai/A0, i = 1, 2, 3 . (2)

Here the symbolA0 is area of the spherical triangle△123;
the symbolsA1,A2 andA3 are areas of the three child tri-
angles,△2P3,△1P3 and△1P2, respectively. The area of
spherical triangleA0 can be calculated using the following

equation

A0 = (∠1O2 + ∠2O3 + ∠3O1− π)R2 . (3)

HereR is the curvature radius of the trajectory sphere; O
is the spherical center;∠1O2 is the field angle of arc edge
1̂42 and so on. Hence the areasA1, A2 andA3 can al-
so be calculated similarly. So pointP can be denoted as
P (L1, L2, L3). It can be proved that there is a unique map-
ping between the pointP and the three area coordinates. Of
course only two of the three area coordinates are indepen-
dent. They satisfy an equation as follows

L1 + L2 + L3 = 1 . (4)

L1 = 1 means thatP and Apex 1 share the same position,
and so on. Based on the three area coordinates, the interpo-
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lation equation on PointP in a 6-node triangular domain
can be written as follows

{
Ŝ (P, Tj)

}
= Σ6

i=1Φi

{
Ŝ (Pi, Tj)

}
. (5)

HereTj is thejth discrete ambient temperature; the vector{
Ŝ (P, Tj)

}
represents 2225 actuator strokes correspond-

ing to the paraboloid deformation with its apex atP and

under the temperatureTj;
{
Ŝ (Pi, Tj)

}
represents 2225

calibrated actuator strokes corresponding to theith stan-
dard paraboloid deformation;Φi is theith shape function
for interpolation in 6-node triangle. This can be written as
follows (Wang 2003)

Φi (L1, L2, L3) =





Li (2Li − 1) , i = 1, 2, 3

4Li−3Li−2, i = 4, 5

4L3L1, i = 6.

(6)

It is clear that the shape function is quadratic.Φi is equal to
1 at theith apex or midpoint, but 0 at other apexes or mid-
points. Substituting Equation (6) into Equation (5) com-
pletes the interpolation calculation of 2225 actuator strokes
for the paraboloid deformationP in triangular domain.

3.4 Calibration and Database

A group of cubic splines are set up as the 1D interpola-
tion functions of the temperature domain. The equations
are written as follows (Ahlberg et al. 1967)

ψj (T ) =aj + bj (T − Tj) + cj (T − Tj)
2 + dj (T − Tj)

3 ,

j = 1 ∼ N − 1 .
(7)

Hereaj , bj , cj anddj are the coefficients of thejth s-
pline;N represents the number of discrete temperatures;
Tj is the jth discrete temperature. Thejth interpolation
functionψj(T ) is defined in thejth temperature interval
([Tj , Tj+1]). It should be second-order differentiable and
continuous at both ends of the interval. Assuming that the
temperature differenceh = Tj+1−Tj is a constant for any
subscriptj, the condition can be written mathematically as
follows (Ahlberg et al. 1967)





aj = ψj (Tj)

aj + hbj + h2cj + h3dj = aj+1

bj + 2hcj + 3h2dj − bj+1 = 0

cj + 3hdj − cj+1 = 0

, j = 1 ∼ N − 1 .

(8)
These equations can be further simplified after elimination
of redundant unknowns as follows

cj + 4cj+1 + cj+2 =3 [ψj+2 (Tj+2) + ψj (Tj)

−2ψj+1 (Tj+1)] /h
2,

j = 1 ∼ N − 2 .

(9)

Here the only unknowns arecj , because the value of
shape function is known at the discrete temperatureTj ,
ψj (Tj) = Ŝ (P, Tj). It is worth noting that the number
of unknowns isN , greater than that of equations(N − 2).
Two free boundary conditions are introduced to make the
equations complete. So they can be expressed as

c1 = cN = 0 . (10)

These boundary conditions are selected for the purpose of
simplification if the both ends of temperature domain are
far away enough from the core area. Solving Equations (9)
and (10) gets the coefficientscj . Substituting them into
Equation (8) can further getbj, cj anddj . Therefore based
on Equation (7) we can obtain the final interpolation of the
2225 actuator strokes as follows

S (P, T ) =ψj (T ) , Tj 6 T 6 Tj + 1,

j = 1 ∼ N − 1 .
(11)

During the process, the program may first tell which in-
terval the input temperature belongs to, and then apply
Equation (11) to complete the interpolation.

3.5 Calibration and Database

There are a set of influences on interpolation accuracy. The
most significant one may be the actual shape accuracy of
standard paraboloid. It should be tested and confirmed vi-
a measurement or high-decision simulation, so called cali-
bration process. Normally calibration method via measure-
ment on site is applied. In the process the initial actuator
strokes related with a standard paraboloid are sent to the
controller to get the real deformation of the cable-net struc-
ture. Then, the actual positions of all cable nodes within
paraboloid aperture are obtained via laser measurement.
They are compared with the ideal paraboloid. The shape
error is calculated and changed into incremental strokes
for the next shape adjustment. The process repeats until
the shape error is less than a critical valueǫ. The 2225 ac-
tuator strokes are then recorded in a database together with
the paraboloid position and ambient temperature.

This calibration on site can give a satisfactory shape
accuracy for standard paraboloids. However, it is great-
ly limited by weather due to laser measurement. In addi-
tion, the ambient temperature is not always able to vary
as expected. Hence it may take a long time to build the
database if all the standard paraboloids are calibrated via
this method. A new calibration method based on finite ele-
ment (FE) simulation is then developed, also called virtual
calibration. In the method, a finite element model is built
including all the important structural units of the reflector
system. such parameters like paraboloid position and am-
bient temperature are input into the model and deforma-
tion of the cable-net is simulated to calculate all actuator
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strokes related to the paraboloid. It is clear that relative-
ly short time is needed disregarding measurement on site.
However the simulation accuracy of the model itself needs
to be tested and confirmed. On many occasions simulation
results are necessary to be compared with the actual mea-
surement so that the model can be updated.

The final calibration method may be a combination of
the above two. First, a few calibrations on site are neces-
sary. Some typical standard paraboloids should be careful-
ly selected so that the recorded data can cover all possible
deformations. Then, the data provide a base for the next
updating of the simulation model. Finally, virtual calibra-
tion are applied in a full range of the interpolation zone so
that a complete database can be built for the interpolation.

The database consists of three main parts. One is a
vector of 2225 calibrated actuator strokes corresponding
to the base sphere. It is the reference surface of zero that
can only be calibrated on site. The second holds over a
list of discrete temperatures and the information of spatial
discretization, including a topological table and a coordi-
nate table. The former is in memory of all 6-node spheri-
cal triangles, identifier of standard paraboloid and discrete
temperatures. The latter stores the positions of all standard
paraboloids. The third is the stroke table, a 3D matrix s-
toring all calibrated actuator strokes. The first dimension
represents identifier of actuator. The other two dimension-
s represent identifier of standard paraboloid and discrete
temperature respectively.

3.6 Considerations on Interpolation Accuracy

It is clear that the total control errors can be decomposed
into two parts, namely interpolation error and calibration
error. The former is mathematically related with the num-
ber of standard points once interpolation functions are se-
lected. The latter is determined by measurement accuracy.
Though virtual calibration may be used, its simulation ac-
curacy is still decided by measurement in model updating.

As far as the former is concerned, 4101 points are se-
lected and distributed around the trajectory sphere so that
they partition the domain into 2004 spherical triangles with
each edge near equal to 11 m. Then an arbitrary triangle is
selected with three apexes and three midpoints, as shown in
Figure 7(a). For any point within the triangle, strokes based
on FE simulation can be obtained as real values. At the
same time interpolation strokes can be calculated as well.
The difference between them is regarded as the interpola-
tion error. The error is calculated based on an RMS statis-
tics of 2225 stroke differences. Several paraboloid apex-
es (red star) are tried (in spherical coordinates), and their
corresponding interpolation errors are shown in the figure.
The figure shows the results of spatial interpolation when

the temperature is10◦C. Similar interpolation results can
be obtained in temperature domain.

The errors seem slightly bigger than anticipated com-
pared with the calibration error of the latter. A method
for improvement may come out. As an actuator drives its
down-tied cable and therefore a paraboloid deformation off
the base sphere. Its absolute stroke consists of three parts.
One is the stroke when it stands on the base sphere. The
second is a distance as it leaves for the object paraboloid
shape along its tension direction, usually radial. This part
can be calculated geometrically once the paraboloid is de-
termined. According to Jiang et al. (2017), it can be written
as

d (θ) = ρ (θ)− 300 . (12)

Hereρ (θ) is the polar equation of paraboloid. The origin of
polar coordinate frame is the spherical center and the sym-
metric axis of paraboloid is set as the polar axis. The third
part is a few influences such as elasticity of cable, temper-
ature, gaps and so on. It is small compared with the former
two parts and hard to determine completely by computa-
tion. This part represents a compensation of the geometric
calculation. Let us rewrite the absolute actuator stroke cor-
responding to a given paraboloid deformation as follows

SC (P, T ) = S (P, T )− S0 − SG (P ) . (13)

HereS (P, T ) is the absolute stroke vector;SG (P ) repre-
sents the second part given in Equation (12) andSC (P, T )

is the third part. The improved method will remove all the
known factors and leave only the third partSC (P, T ) for
interpolation. Based on the improved method, the interpo-
lation error is again tried on the same triangle and inter-
polation points, as shown in Figure 7(b). This shows that
the errors reduce greatly as much as only 10%∼15% of
the initial values. So Equation (13) is finally used to form
a calibration table of standard paraboloids.

As far as the latter is concerned, the real shape accura-
cy of the base sphere and standard paraboloids are the main
focus. Basically that of the base sphere is more important
in that it is the baseline, so higher accuracy is demand-
ed. There are a few conditions on the calibration of base
sphere. It is usually during a cloudy morning of summer
with air temperature nearly to20◦C and before sunrise to
avoid an uneven distribution. It should be an average value
of several times to reduce the measurement error as much
as possible. The final shape error should not be larger than
2.0 mm RMS, compared with about 1.5 mm RMS of the
measurement error. In the case of the calibration of stan-
dard paraboloids, though the condition is not so strict, its
final shape error should be confined within 3 mm RMS. In
the case of virtual calibration, the value should be further
constrained, leaving error space for model updating. With
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(a) (b)

Fig. 7 Comparison of interpolation error between two methods. (a)Initial method; (b) Improved method.

(a) (b)

Fig. 8 Flow chart of open-loop control. (a) Build database; (b) Interpolation.

regarding to the limit of above errors and other possible
errors, the final control error is estimated less than 5 mm
RMS for any paraboloid shape deformed by the cable-net.

3.7 Considerations on Deformation Safety

Generally, the paraboloid deformation happens within the
500 m aperture if its zenith angle is less than26.4◦. As its
zenith angle further increases, some parts of the 300 m il-
lumination area begin to spill from the 500 m aperture. As
a result, the cable nodes at the outermost margin cannot
move to the paraboloid shape as expected due to the limit
of the ring girder. At last the corresponding down-tied ca-
bles usually have zero tensions. So, large-zenith paraboloid
deformation is different. The cable nodes at the outermost

margin are not required to track the paraboloid shape any
more. The corresponding down-tied cables are required to
keep at least a threshold value of prestress. Otherwise some
dangers like fatigue of cables and collision of reflector el-
ements may exist. Another case is extremely low temper-
ature which may cause abnormally high stresses of some
cables. On such occasions, the corresponding cable nodes
are also not required to track the paraboloid shape exact-
ly any more. Therefore the cable stresses are expected to
decrease within the safety range.

It is clear that close-loop control or a simple geomet-
ric calculation is very hard to take the above two cases
into consideration. It is lucky that calibration of standard
paraboloids provides the solution. Before calibration on
site, mechanical simulation is done to obtain an initial s-
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X /m

Y
/m

Fig. 9 Calibrated shape error of the base sphere (1.7 mm RMS).

Fig. 10 Triangular domain for the interpolation of paraboloid
(269.29◦, 26.41◦) and the measured shape errors (RMS) of six
standard paraboloids.

Fig. 11 Measured shape error of the paraboloid (269.29◦,
26.41◦).

tatus regarding the deformation safety. Simulation can be
continued after the calibration to assess deformation safe-
ty. For virtual calibration, the simulation result itself has
already considered deformation safety.

3.8 Overview of Open-loop Control

The whole work is made of two phases. The first is to
build the database for interpolation following this method.
It devotes to a lot of important hard work and may take a
long time. The second is involved in programming of the
above control algorithm, including searching the spherical
triangle which the interpolation point belongs to. Figure 8
shows the total flow chart. It is worth noting that a very
important step is the calibration of the base sphere on site.
As the baseline of absolute actuator stroke, it is only avail-
able via measurement on site. Furthermore, the calibration
temperatureT0 is fixed on20◦C, a value that happens fre-
quently in local weather and under which the cables are
manufactured as well. During the calibration of standard
paraboloids, either method may be available. At the be-
ginning, more focus may be put on the calibration on site
in that it can provide measurement data for updating the
finite element model as well. Then virtual calibration are
applied for much more other standard paraboloids and oth-
er discrete temperatures that are not easy to catch during
the calibration.

4 VERIFICATION OF CONTROL ACCURACY

Our algorithm was tested on site. Here only calibration on
site was available. The laser measurement was used for cal-
ibrations and the next verification. First, the shape accuracy
of the base sphere was calibrated. Since it is the baseline of
all calculations in the open-loop algorithm, the calibration
is strictly done at dawn of summer just before the sunrise
when the temperature is close to20◦C and smoothly dis-
tributed. Furthermore the calibration was repeated at least
three times to get arithmetic average to reduce the mea-
surement error as possible. Though in the calibration there
might be some abnormal actuators that could not fulfill the
stroke adjustments, the number was small and it did not af-
fect the calibration greatly. They could be left for the nex-
t calibration. Figure 9 shows the final shape error, about
1.7 mm RMS as a statistic result of 2225 positions of cable
nodes, less than the required 2 mm RMS. Second, six s-
tandard paraboloids building a spherical triangular domain
were calibrated for the next interpolation. It took 3 days in
January to finish the calibrations so that the ambient tem-
perature was about6◦C for each calibration. The required
error for paraboloid calibration is less than 3 mm RMS.
Figure 10 shows No. of the six standard paraboloids, their
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positions and their measured actual shape error (RMS).
Finally an arbitrary paraboloid with the spherical coordi-
nate (269.29◦, 26.41◦) was selected in the triangular do-
main for the interpolation and the next structural deforma-
tion on 2019 Jan. 27. The local temperature was the same
6◦C. The total time needed for calculation was also tested
on the platform of MATLAB software, about 100 ms, less
than the required 500 ms. The time is not only obviously
shorter than the measurement time, but also obviously less
than the fastest simulation time by finite element analysis,
about 40 – 50 s. The 2225 calculated strokes were then sent
to PLC for the structural deformation. Its actual shape error
is shown in Figure 10 and the error distribution is shown
in Figure 11,∼3.32 mm RMS, less than the requirement of
5 mm RMS. It proves that the algorithm works.

5 CONCLUSIONS

An open-loop control algorithm is put forward for the de-
formation control of the active reflector system of FAST.
The method is based on a calibration database and inter-
polation in 2D spatial domain and temperature domain re-
spectively.

The algorithm has three main steps. First, discretiza-
tion is done to get the spherical triangles and the stan-
dard paraboloids on the trajectory sphere. Similarly the
discrete temperatures are selected in temperature domain.
Second, calibration is done for the base sphere and s-
tandard paraboloids to build database for interpolation.
Finally, interpolation is done first in the spatial domain and
then in the temperature domain to get the 2225 actuator
strokes mapping to a given paraboloid deformation.

The algorithm is completely independent of real-time
measurement of cable nodes so that it has advantage of
working all-weather and no additional EMI. Furthermore,
its control accuracy can be effectively improved via rea-
sonable layout of standard paraboloids and increasing cal-
ibration accuracy. Meanwhile, deformation safety is effec-
tively considered via calibration.
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