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ABSTRACT
As radio telescopes become more sensitive, radio frequency interference (RFI) is becoming more important for interesting signals
of radio astronomy. There is a demand for developing an automatic, accurate and efficient RFI mitigation method. Therefore,
we have investigated an RFI detection algorithm. First, we introduce an asymmetrically reweighted penalized least squares
(ArPLS) method to estimate the baseline more accurately. After removing the estimated baseline, several novel strategies were
proposed based on the SumThreshold algorithm for detecting different types of RFI. The threshold parameter in SumThreshold
can be determined automatically and adaptively. The adaptiveness is essential for reducing human intervention and for the online
RFI processing pipeline. Applications to data from the Five-hundred-meter Aperture Spherical Telescope (FAST) show that the
proposed scheme based on ArPLS and SumThreshold is superior to some typically available methods for RFI detection with
respect to efficiency and performance.
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1 IN T RO D U C T I O N

In radio astronomy, radio frequency interference (RFI) is becoming
more important for radio observational facilities. RFI has always
influenced the search for and analysis of interesting astronomical
objects. Mitigating RFI has become an essential procedure in pulsar
survey data processing. The Five-hundred-meter Aperture Spherical
Telescope (FAST) is an extremely sensitive radio telescope formally
in operation in 2020 January. It is necessary to find an effective and
precise RFI mitigation method for FAST data processing.

Available RFI mitigation methods can be divided into three
categories based on their principles (Akeret et al. 2017b). The
first category consists of linear methods, such as singular vector
decomposition (SVD; Offringa et al. 2010), principle component
analysis (PCA) and their variants (e.g. Zhao, Zou & Weng 2013). In
practice, these methods are not suitable for dealing with frequency-
varying RFI (Offringa et al. 2010). The widespread use of radio
sources in everyday life causes a diversity of RFI. The diverse
contamination of RFI makes it difficult to model RFI using these
linear methods. The second category consists of machine learning
algorithms that can automatically learn the discriminating features
between RFI and non-RFI (Akeret et al. 2017b; Mosiane et al.
2017; Kerrigan et al. 2019). One typical limitation of this type of
method is that these methods need a set of observations with labels,
which are time-consuming to obtain. The last category consists of
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thresholding methods, which are widely used in the available RFI
mitigation pipelines because of their simplicity and effectiveness.
One typical thresholding method is simple thresholding (Schoemaker
2015), which flags a pixel as RFI when its intensity is larger than
a preset parameter (called the threshold). The advantages of this
method are its simplicity and high efficiency. However, this method is
sensitive to noise because it is dependent on the comparison of single
pixels. To overcome this limitation, Offringa et al. (2010) introduced
an RFI detection algorithm, SumThreshold, based on computing
the combined effects of some adjacent pixels. The SumThreshold
method has been wrapped in the RFI detection pipeline for the Low
Frequency Array (LOFAR), e-MERLIN (Peck & Fenech 2013), the
Bleien Radio Observatory (Akeret et al. 2017a), etc.

In the thresholding methods for RFI detection, a fundamental
assumption is that the intensities of the data should be constant in
the absence of interference (Winkel, Kerp & Stanko 2007). However,
almost all astronomical data do not fit this assumption because of the
presence of the inconsistency of receiver response and background
information. This type of inconsistency has some negative effects on
RFI detection and can be approximately described using a smooth
surface (referred to as the baseline; Winkel et al. 2007). The baseline
should be accurately estimated and removed from data. To do this,
Winkel et al. (2007) propose a scheme to describe the baseline using
a two-dimensional (2D), low-order polynomial, whereas Offringa
et al. (2010) propose a baseline fitting scheme based on a sliding
window and some weighted Gaussian filters. However, it is shown
that the accuracy of these baseline estimations can be affected by
broad-band RFI.
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Figure 1. A time–frequency image of FAST data for 0.05 s in the frequency range from 1000 to 1500 MHz with an SED curve on the right, a frequency-integral
curve in the lower panel, and a zoomed view of the RFI region as the main panel. A narrow-band RFI and a broad-band RFI can be identified from the peaks on
the SED curve. The blob RFI contaminates only a small ratio of pixels and cannot be identified based on the SED curve. The colour bar of the image is shown
at the top of the time–frequency image.

Therefore, we proposed a baseline fitting method based on
an asymmetrically reweighted penalized least squares algorithm
(ArPLS; Baek et al. 2015). The penalized constraint in this method
makes the baseline fitting more robust and accurate than traditional
methods, by mitigating the negative influences from instrumental re-
sponse. The baseline is estimated from a time-integral curve/spectral
energy distribution (SED) curve (a one-dimensional vector), while
the traditional method is carried out using a time–frequency image
(Offringa 2012). Therefore, this ArPLS-based method is more
efficient.

For flagging the RFI, we propose several strategies based on
the SumThreshold algorithm. Not only can these strategies detect
the traditional band RFI more efficiently, but they can also more
accurately detect blob RFI, a short and small-bandwidth interference
typically covering nearly 100 μs and a bandwidth of less than 1 Hz.

This paper is organized as follows. The experimental FAST data
and their characteristics are described in Section 2. In Section 3, we
present the proposed baseline fitting method and the strategies to
detect the RFI. We present the application of the proposed scheme
to FAST data and discuss the results in Section 4.

2 EXPERIMENTA L DATA AND THEIR
C H A R AC T E R I S T I C S

The proposed RFI mitigation scheme is tested on FAST observations.
These data are sampled at a time resolution of 4.9152 × 10−5 s on
4096 frequency channels. The size of each time–frequency image is
4096 × 1024 pixels, where 1024 is the number of sampling points
per frequency channel within one subintegration.

The data set consists of 100 time–frequency images (subintegra-
tions), which can be taken for any beam in different areas of the
sky and at different observation times by the 19-beam receiver. The
diversity of the RFI and baseline guarantee the objectiveness of the
performance evaluation on the proposed scheme. To design the RFI

mitigation scheme to be as efficient and accurate as possible, it is
necessary to investigate the characteristics of RFI on the FAST data.

The pulsar search observations of FAST take a wavelength range
from 1000 to 1500 MHz and a frequency resolution of 122.07
KHz (Jiang et al. 2020). In FAST observations, there are mainly
two types of RFI: band RFI and blob RFI (Fig. 1). The band
RFI is likely to be generated by television broadcasts, mobile
communication and radar. The blob RFI is a short, small-bandwidth
signal from unknown sources. Suppose s(t, f) represents the input
‘Data’ in Fig. 2, where t represents time and f is the frequency. The
SED is computed by aggregating the energies along the time axis
SED(f ) = ∑

t s(t, f )/nt (Fig. 1), where nt is the number of pixels
per frequency channel in one subintegration. The band RFI occupies
one or several frequency channels with a time duration of almost
the whole subintegration, whereas the blob RFI just contaminates
several pixels. Fig. 1 shows one typical FAST observation and the
corresponding SED curve. In practice, there may be more than one
peak on one SED segment contaminated by one frequency-varying
band of RFI (Jiang et al. 2020).

3 THE PROPOSED SCHEME

Based on the characteristics of the RFI in the FAST data, we propose
a novel RFI mitigation scheme. This RFI mitigation scheme is
designed based on the two main parts: ArPLS and the SumThreshold
algorithm (for convenience, this scheme is referred to as ArPLS-ST).
A flowchart of the ArPLS-ST is presented in Fig. 2. The core pro-
cedures are ‘Baseline fitting and removal on SED’, ‘SumThreshold
for band RFI detection’, ‘Baseline removal on image’ and ‘Blob RFI
detection’. For fitting the baseline, we introduce the ArPLS method.
In the procedures ‘SumThreshold for band RFI detection’ and ‘Blob
RFI detection’, several novel strategies based on the ST algorithm
are applied to detect different types of RFI. Besides, the threshold in
ArPLS-ST can be automatically determined by a generalized PauTa
criterion (Shen et al. 2017). This automatic parameter setting reduces
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ArPLS-ST 2971

Figure 2. A flowchart of the ArPLS-ST scheme. The ‘Data’ is an observation of a time–frequency image s(t, f). The baseline fitting and removal are designed
to reduce the negative effects on RFI detections from the inconsistency of receiver response and background information.

manual intervention and makes the scheme suitable for an automatic
processing pipeline.

3.1 Baseline fitting and removal

Instead of estimating the baseline in the time–frequency image, we
propose an estimation from the SED curve using the ArPLS.

3.1.1 The ArPLS for fitting the baseline on the SED curve

A suitable baseline estimation should satisfy two requirements:
fitness and smoothness. Let y ∈ RD denote the data being processed
and let z ∈ RD be the estimated baseline of y, where D is a
positive integer and denotes the number of sampling points along
the frequency axis. In this work, y represents the SED curve
of an observation (a subintegration from FAST). The constraint
‘fitness’ ensures that the estimated baseline z precisely describes
the information of the original signal y within interference-free
regions, while ‘smoothness’ ensures the estimated baseline is not
influenced by the RFI. Consequently, the optimal estimation of z can
be obtained by minimizing the following weighted penalized least
squares function (Eilers 2003; Cobas et al. 2006; Zhang et al. 2010;
Baek et al. 2015)

S(z) = ( y − z)�W( y − z) + λz�M�Mz, (1)

where W is a diagonal matrix with its diagonal element wi ≥ 0
representing the weight corresponding to the square difference ( yi −
zi)2, i = 1, . . . , D; M is a D × D matrix. Actually, M is a second-
order difference matrix, which is considered to be a natural way to
express the roughness in mathematics (Ramsay & Silverman 2007).
Besides, λ is a preset coefficient that controls the balance between
fitness and smoothness. Ideally, wi should be set to a value of almost
0 for the pixels in the peak regions contaminated by RFI and nearly
1 for the pixels outside these regions. Unfortunately, these peak
regions remain unknown for a given observation and it is difficult and
time-consuming to locate them in application (Andreev et al. 2003;
Jirasek et al. 2004). Baek et al. (2015) proposed an iterative weighting
procedure to obtain the optimal estimation of z and W without peak
searching. This iterative weighting procedure is referred to as the
ArPLS algorithm.

3.1.2 Baseline fitting and removal on SED curve

The SED curve can be divided into three parts according to their RFI-
contamination characteristics: interference-free regions, narrow-
band RFI regions and broad-band RFI regions. In the interference-
free regions, the SED curve is smooth, although the band RFI causes
some dramatic fluctuations (Fig. 1). There are sometimes multiple
peaks within one protuberance in the regions contaminated with some
broad-band RFI, which inevitably cause some difficulties in baseline
fitting.

It is shown that ArPLS can quickly converge in the interference-
free regions and narrow-band RFI regions (Fig. 3a). In the broad-
band RFI regions, although the ArPLS converges relatively slowly,
experiments show that it is still capable of giving a reasonable
estimation for the baseline after several more iterations (Fig. 3a).
To our knowledge, the typical baseline fitting methods used in pulsar
data processing are the tile-based polynomial fitting (TPF; Winkel
et al. 2007) and the weighted Gaussian filter (GF; Offringa et al.
2010). It is shown that both the TPF and GF work well in the
interference-free regions and narrow-band RFI regions (Figs 3b and
c). However, the baselines fitted by them tend to be raised up by
the peaks within broad RFI regions. Furthermore, the TPF method
performs poorly near the edges of each tile because of the boundary
effects of the polynomial fitting, especially when the edge is in the
peak regions.

The most significant difference between these two methods and
the proposed ArPLS is that the ArPLS can fit the baseline directly by
tolerating the RFI in the data, while the TPF and GF couple the RFI
removal and baseline fitting because of their sensitivity to RFI. When
the sharp peaks are marked as candidate RFI regions by the TPF and
GF, the pixels within these regions are discarded. However, this
discarding makes it difficult for these methods to accurately estimate
a smooth baseline and to judge whether the regions between the
marked regions are contaminated with any relatively weak RFI or
not. Therefore, the TPF and GF often fail to detect some relatively
weak RFI in the regions between two strong peaks in the broad-band
RFI regions (Fig. 3b and c).

Actually, the smoothness of the baseline estimated by the proposed
scheme is controlled by the second term of equation (1). This con-
straint is implemented using a second-order difference and adaptied
to the radio observations in the iterative estimation procedures. In
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Figure 3. Examples of baseline fitting, using three baseline fitting methods (ArPLS, TPE and GF), to the observation data in the frequency ranges 1000–1037,
1208–1244, 1269–1305 and 1305–1342 MHz. In these examples, there exist several narrow-band and broad-band RFI regions. The convergence characteristics
of the iterative process are shown for several iteration steps.

Table 1. The average execution times of the baseline fitting methods for one
FAST time–frequency image. These are computed by running every method
10 times.

Method Execution time

ArPLS 27.4 ± 0.4 ms
Weighted Gaussian filter (GF) 32.7 ± 0.4 ms
Tile-based polynomial fitting (TPF) 38.3 ± 0.6 ms

the TPF and GF, however, the smoothness is constrained by the order
of the polynomial and the scale parameter, respectively, which are
preset based on human experience. Therefore, the proposed ArPLS
method is more robust than the TPF and GF.

Although the ArPLS is an iterative algorithm and there are some
equations to be solved in each iteration, experiments show that it
is still fast enough because the system is sparse and almost all
calculations can be implemented in a vectorized style. The running
time for the execution of the three baseline fitting methods is
presented in Table 1. The ArPLS is the fastest of these three methods,
and the other two methods need to be executed several times for every
time–frequency image in the FAST application.

3.1.3 Baseline removal on the time–frequency image

To detect blob RFI, the baseline removal should be performed on the
time–frequency image. However, it is time-consuming to estimate
the baseline directly in a time–frequency joint space because of the

large number of observation pixels. Fortunately, it is shown that
the spectrum in a subintegration from FAST observation generally
tends to be stable on time (Fig. 5). Therefore, the baseline of each
spectrum can be approximated by a shared curve theoretically, and
this work used the baseline estimated from the SED curve as the
shared curve.

Fig. 6 presents the result of baseline removal on a time–frequency
image. Compared with the original time–frequency image, the back-
ground inconsistency of the processed image is removed excellently
and the area with low contrast in the original image becomes
easier to distinguish. Therefore, the blob RFI can be identified more
accurately using the thresholding algorithms after baseline removal.
Meanwhile, this scheme saves computing resources and time by
avoiding estimation of the baseline for a time–frequency image from
scratch.

3.2 RFI detection based on SumThreshold

After baseline removal, the pixel intensity should be almost con-
stant in the interference-free regions while peaks caused by the
RFI still remain and are even more prominent (Figs 4b and 6b).
Therefore, we can accurately detect RFI using the SumThreshold
method.

The input to SumThreshold is a one-dimensional vector, which is
the SED curve in the band RFI detection. For blob RFI detection,
the input to SumThreshold is a row or a column of a matrix
representing a time–frequency observation after baseline removal.
SumThreshold is an iterative algorithm. In each iteration, four
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Figure 4. Results of baseline fitting and removal using the ArPLS for the time–frequency image in Fig. 1. (a) An original SED curve (solid line) and the
baseline (dashed line) fitted by the ArPLS. (b) The SED curve after removing the estimated baseline (solid line), and the frequency channels corresponding with
the detected band RFI (marked as points).

Figure 5. The stability of the SED with time for a set of subintegration from FAST observations. This stability indicates that the baseline of a time–frequency
observation from FAST can be estimated using the SED curve.

computational steps are carried out: calculation of the threshold,
value replacement, summation, and RFI detection and flagging.
The fundamentals of SumThreshold can be found in Offringa et al.
(2010). The Kσ criterion (a variant of the PauTa criterion) is applied
to adaptively determine the value of the threshold. Specifically,
RFI is detected by checking whether a pixel deviates from the
mean more than K times the standard deviation. The Kσ criterion
determines the threshold based on the pixel-value distribution of
the input to SumThreshold (Fig. 7). Some excellent investigations
on the estimation of standard deviation can be found in Fridman
(2008).

3.2.1 Band RFI detection

SumThreshold is subsequently applied to the SED curve for
detecting the band RFI and to a time–frequency image for detecting
the blob RFI. Actually, the order in which SumThreshold is used for
detecting the band RFI or blob RFI does not have any influence on
the detection results. However, we can detect RFI more efficiently
by using the SumThreshold-based scheme in the order of band RFI
first, especially when there is too much band RFI. After that, in
detecting blob RFI, SumThreshold does not need to be performed on
the regions where band RFI is detected.
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Figure 6. Comparison of a time–frequency image and the result after baseline removal.

Table 2. Results of six RFI flagging methods evaluated on 100 time–frequency images (see Section 2). Each of the
methods – TPF-ST, GF-ST, ArPLS-ST, rfifind, SumThreshold (with SIR) and SumThreshold (without SIR), where SIR
is the scale-invariant rank operator – refers to a full pipeline of detecting both band RFI and blob RFI. ‘Execution time’
consists of the computation time of baseline fitting and RFI detection on one 4096 × 1024 image randomly selected
from the 100 time–frequency images (Section 2), and the accuracy, false positive rate (FPR), false negative rate (FNR)
and F1 score are computed from all of the 100 images.

Method Accuracy FPR FNR F1 Execution time

Rfifind 88.54 3.14 55.60 58.22 Not comparable
SumThreshold (with SIR) 82.98 7.98 64.95 48.96 16 900 ± 66 ms
SumThreshold (without SIR) 83.80 2.05 91.25 16.08 16 500 ± 17 ms
TPF-ST 93.51 3.20 23.89 82.63 705 ± 9.35ms
GF-ST 96.60 1.08 16.08 87.39 752 ± 17.5ms
ArPLS-ST 97.95 1.53 4.78 93.65 534 ± 4.5ms

Figure 7. A histogram of pixel values after baseline removal. This histogram
can be approximated using a normal distribution. Note that the figure is
truncated on value 100 in the x-axis to show the most pixels.

To detect the band RFI, SumThreshold is performed on the SED
curve after removing the estimated baseline. Experiments show that
the protrusions above the horizontal line are detected excellently
by the proposed scheme (Fig. 4). These protrusions result from the
energy differences between the RFI-contaminated pixels and the
interference-free pixels. Therefore, the pixels on the frequency band
corresponding with the detected protrusions on the SED curve will
be flagged as band RFI .

Actually, there may exist some significant different intensities
among the pixels contaminated by band RFI. The differences result
from the variation in received power even though the telescope
continuously receives interference. This variation may come from
several effects, such as intrinsic variation of the interference, change

of propagation environment, and instrumental effects (Offringa
2012), etc. These differences in energy can result in leak detection
for the RFI mitigation methods directly using the time–frequency
image. Therefore, we remove the pixels corresponding to the
flagged frequency channels on SED curves. However, this band
RFI mitigation method has the potential to bring about some false
positives, which can occur between two strong band RFI in case
of the uncontaminated pixels covering a small ratio of the area in
the subintegration being processed. This ratio should be so small
that the corresponding frequency band can trigger the threshold
in the SED curve. The probability of occurrence depends on the
duration length of a subintegration, and a short duration helps reduce
this possibility. Therefore, our experiments show that, for FAST
data, this kind of negative possibility is insignificant and acceptable
(Table 2).

3.2.2 Blob RFI detection

After removing the estimated baseline from a time–frequency image
(Sections 3.1.3 and 3.2.1), we can obtain some results similar to
Fig. 6(b). After the band RFI is removed, the results are fed to
SumThreshold for blob RFI detection. Blob RFI bursts often exist
with a certain duration, in both the time and frequency direction.
Therefore, SumThreshold is executed iteratively and alternately
along the time and frequency axes in a two2Dage with the detection
window increasing from 1 to a preset maximum width. The flagging
procedure naturally starts from a large threshold for strong RFI, and
then the threshold decreases exponentially. Finally, it outputs the
mask indicating the position of the RFI (Fig. 8).
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Figure 8. The result of blob RFI detection.

4 A PPLICATION TO THE FA ST DATA AND
DISCUSSION

To investigate the effectiveness of the proposed scheme, some
quantitative evaluations and comparisons with several representative
methods are conducted on real radio astronomy data (Section 2) for
RFI detection. In this section, we first introduce experimental setting,
and then present the experimental results.

4.1 Experiment setting

In this experiment, the proposed scheme is compared with five other
methods: rfifind from PRESTO;1 the SEEK2 Sumthreshold implemen-
tation with or without a morphological scale-invariant rank (SIR)
operator;3 a one-dimensional polynomial fitting-SumThreshold
(TPF-ST) and one-dimensional Gaussian filter-SumThreshold (GF-
ST). Each of the six RFI fagging methods was evaluated on 100
time–frequency images (Section 2). To make the evaluation results
fair and not favour any automatic method, the ground-truth labels
are generated by marking the RFI manually on the time–frequency
images. It is worth noting that the methods are only tested for visually
present RFI. The SIR operator is meant to detect RFI samples that
are under the noise and invisible. Such samples would be counted as
false positives. The performances of these methods are evaluated by
accuracy, false positive rate (FPR), false negative rate (FNR) and F1
score. Besides, the implementations of the last four methods are also
based on SEEK (a Python library), which makes the execution time
of these methods comparable, except for rfifind.

Among the five RFI detection methods, rfifind is a unique method
that is not a thresholding method. The operations for RFI detection
in TPF-ST and GF-ST are the same as those in ArPLS-ST except
for the baseline fitting methods. In the meantime, TPF and GF need
to be executed alternatively with thresholding algorithms, because
of their sensitivity to the RFI. However, the ArPLS only needs to
be executed once before detecting the RFI. These three methods all

1https://github.com/scottransom/presto
2https://github.com/cosmo-ethz/seek
3For convenience, this work uses SumThreshold (with SIR) and SumThresh-
old (without SIR) as the abbreviations for the cases of the traditional
SumThreshold with an SIR operator and the traditional SumThreshold
without an SIR operator, respectively.

detect the band RFI on the SED curve and identify the blob RFI on
the time–frequency image utilizing the SumThreshold methods. As
for the traditional SumThreshold, detection of all types of the RFI is
performed on the time–frequency image.

The parameters (e.g. thresholds in SumThreshold, smoothness
parameter λ in ArPLS, etc.) that need to be determined are optimized
by maximizing the F1 score. This is because the F1 score is
capable of measuring the overall performance of the methods when
faced with the classification on the imbalanced data. The imbalance
refers to the situation when RFI-free pixels are much more than
RFI-contaminated pixels. The optimization of the parameters is
implemented through a grid search.

4.2 Experimental results and discussion

The performance metrics of the RFI detection on the FAST data
are presented in Table 2. On the whole, ArPLS-ST outperforms the
other methods, especially on accuracy, FNR, F1 score and efficiency.
The performances of the last three methods (TPF-ST, GF-ST and
ArPLS-ST) are better than the traditional SumThreshold.4 The main
difference between the implementations of these three methods, and
the traditional SumThreshold is that the traditional SumThreshold
fits the baseline and detects the band RFI in a 2D time–frequency
image, while the other methods do these on the integration curve
SED. The experimental results in Table 2 show that the methods
TPF-ST, GF-ST and ArPLS-ST achieve much better performance
than the traditional SumThreshold, and indicate the superiority of
baseline estimation on the SED curve.

However, the intensities of band RFI are much weaker than those
of the blob RFI. Therefore, the thresholds for band RFI performed
on SED curves are set smaller than those for blob RFI on the
time–frequency images in TPF-ST, GF-ST and ArPLS-ST. In the
traditional SumThreshold, there is just one threshold for all types of
RFI. To detect the band RFI as much as possible, a small threshold
should be chosen. However, this small threshold is likely to result in
too many non-contaminated pixels with slightly high intensity that
are mistakenly detected as blob RFI. In contrast, a large threshold
can bring about leak detections around a detected band RFI, and
a high FNR. Therefore, the last three rows in Table 2 show that

4Traditional SumThreshold refers to the SumThreshold (with SIR) and the
SumThreshold (without SIR) introduced by Offringa et al. (2010).

MNRAS 500, 2969–2978 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/3/2969/6015985 by guest on 09 M
arch 2021

https://github.com/scottransom/presto
https://github.com/cosmo-ethz/seek


2976 Q. Zeng et al.

Figure 9. An example of FAST data for RFI detection and its labelled mask. (b) The computational results based on the procedures in Section 3.2.2 for band
RFI. (c) The result after flagging both band RFI and blob RFI using the ArPLS-ST method. The result in (b) is blacker than in (c) because the blob RFI with
higher intensity has not been removed in the former.

designing different thresholds for different types of RFI is essential
to substantially improve the performance of RFI detection.

In addition, the traditional SumThreshold algorithm applies the
SIR operator (Offringa, Van De Gronde & Roerdink 2012; Van
de Gronde, Offringa & Roerdink 2016) to enlarge the flag mask
and avoid a failed detection for RFI with weak intensities in the
presence of the variation in received power (Offringa et al. 2012).
After applying the SIR operator, the performance, based on the FNR
and F1 score, of the traditional SumThreshold is improved. However,
it raises the FPR from 2.05 to 7.98 per cent. Therefore, this work
utilizes the thresholding method on a SED curve and removes all
the pixels corresponding to the flagged frequency channels to handle
the variation of the received power. This optimization dramatically
improves the performance of the RFI mitigation method without
bringing about too many false positives (the last row in Table 2).
This work also tried to use the SIR operator to detect blob RFI but
it did not give the result we expected. Although the main parts of
the blob RFI are stronger than other signals (such as pulsar signals,
band RFI, background information, etc.), its wings are weak and
presumably continue under the noise (Fig. 8). The detection of these
weak RFI pixels can be improved by using the SIR operator. However,
some of the similar weak pixels could also be non-RFI pixels, which
result in false positives with the SIR operator. At the same time,
the SIR operator needs more computation and decreases efficiency.
Therefore, the proposed scheme utilizes the SumThreshold without
SIR to detect blob RFI.

As for the TPF-ST and GF-ST, the difference between these
two methods and the proposed ArPLS-ST is in the baseline fitting

procedure. The experiments in the last three rows of Table 2 show
that the proposed ArPLS method can obtain a more appropriate
estimation for the baseline than the tile-based polynomial fitting and
Gaussian filter method. Although the proposed scheme has a slightly
higher FPR than the GF-ST, the false positives in the ArPLS-ST
are always the ‘small burr’ in the integration. However, the GF-ST
always makes some mistakes in the multiple-peak regions, which
is likely to have some more severely adverse effects on subsequent
analysis and application. As shown in Fig. 10, the TPF-ST method
also suffers from the multiple-peak problem in frequency ranges
1220–1244 and 1281–1305 MHz, etc.

The first method, rfifind, is totally different from the other methods
described above. It mainly detects the broad-band RFI with a short
duration and strong narrow-band RFI (Ransom 2001). The broad-
band RFI with a short duration is detected by performing a time-
domain clipping of the curve integration by channels and the strong
narrow-band RFI is detected based on the computational result of the
fast Fourier transform algorithm. However, rfifind is not able to detect
relatively weak RFI and blob RFI. Therefore, the results in Table 2
show that rfifind does not perform as well as the ArPLS-ST overall.

Fig. 10 shows the results of the six RFI flagging methods on one
time–frequency image. It is found that the results of the last three
methods (TPF-ST, GF-ST and ArPLS-ST) are similar, in general.
Besides, rfifind is unable to flag the blob RFI. Therefore, the area
outside the band RFI regions is dark because of the high intensity of
blob RFI (Fig. 10a). As for the traditional SumThreshold, it cannot
flag the band RFI completely, especially in the absence of the SIR
operator.
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Figure 10. The detection results for the six methods. The top-left panel looks black outside the RFI regions because the strong blob RFI has not been removed
by rfifind and the intensity of the remaining part is relatively weak.

Logically, every method in rfifind, SumThreshold (with SIR),
SumThreshold (without SIR), ArPLS-ST, TPF-ST and GF-ST con-
sists of two procedures: baseline fitting and RFI detection (band
RFI and blob RFI). To fit the baseline, the traditional SumThreshold
utilizes a Gaussian filter (Offringa et al. 2010) in a 2D time–frequency
image; the last three methods (TPF-ST, GF-ST and ArPLS-ST) con-
duct computations on a one-dimensional SED curve, which result in
a more efficient implementation than the traditional SumThreshold.
In the RFI detection, the five methods have similar running-time
costs. Therefore, TPF-ST, GF-ST and ArPLS-ST are much more
efficient than SumThreshold (with SIR) and SumThreshold (without
SIR) (Table 2).

It is worth noting that all the listed methods except for rfifind
are implemented in Python without any optimization. However,
the execution speed of Pthe ython code is significantly lower

than that of Fortran, C,or C++ because Python is an interpreted
language, not compiled, and its efficiency is affected by the Global
Interpreter Lock (GIL). Therefore, although the comparison on
execution time between the methods is relatively fair in Table 2,
the efficiency of TPF-ST, GF-ST, SumThreshold (with or without
SIR) and ArPLS-ST can be increased if they are implemented using
C, C++ or Fortran, and optimized (e.g. parallel computing, GPU
acceleration).

In summary, the scheme ArPLS-ST is proposed for radio data
processing. Experiments on the FAST data show that this scheme
can effectively detect RFI. It provides a fast and accurate baseline
estimation method based on the SED curve to reduce the potentially
negative influences from the inconsistency of the receiver response,
and can accurately locate the RFI regions. Several identification
strategies are designed for detecting RFI.
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In future, some potential improvements and extensions still can be
made.

(i) Parameter set-up. There are two types of parameters that
need to be set in the ArPLS-ST. One is the smoothness parameter
λ in the ArPLS algorithm. This work experientially set it to 10 000,
a constant, which could obtain satisfactory results for all of the
available FAST data. However, it may not be good enough to handle
the complex radio environment in other situations. In practice, the
smoothness parameter can be automatically determined by some
statistics that quantify the characteristics of the original integration
curve. Another is the threshold in the SumThreshold algorithm. As
mentioned in Section 3, the threshold is determined by the Kσ

criterion, which concentrates on the aggregation of the pixel intensity
distribution. In fact, it may be a more natural and robust way to set
this kind of parameter through pixels far away from the cluster. Some
outlier detection techniques may be taken into account to solve this
problem in future.

(ii) More accurate flagging strategy for band RFI. The band
RFI flagging strategy in the ArPLS-ST will remove all of the
pixels within the marked channel in one subintegration. This trigger-
remove-all scheme may potentially result in some false positives to
some extent. An accurate band RFI flagging strategy that has the
ability to identify the band RFI with different durations may be a
better choice.

(iii) Distinction between the signal of interest and RFI. The key
to threshold-based RFI flagging methods is that the energy of the RFI
bursts is much stronger than that of non-RFI data and the signal of
interest. Traditional thresholding algorithms will identify the strong
signal as the RFI. This kind of false positive causes huge losses
for research and is not allowed to happen in practice. Therefore,
distinguishing them according to their characteristics is the most
important and urgent task for the thresholding-based RFI flagging
methods. We designed a novel method to distinguish between the
signals of interest and the detected candidate RFI.

(iv) Software availability. The Python software package of this
work will be updated whenever possible at http://zmtt.bao.ac.cn/G
PPS/RFI for open usage, given the proper citation to this paper.

AC K N OW L E D G E M E N T S

XL and QZ were supported by the National Natural Science
Foundation of China (Grant No. 61075033), the Natural Science
Foundation of Guangdong Province (No. 2020A1515010710). CW
was supported by the National Natural Science Foundation of China
(U1731120).

DATA AVAI LABI LI TY

A Python software package of this work and sample data are available
at http://zmtt.bao.ac.cn/GPPS/RFI.

REFERENCES

Akeret J., Seehars S., Chang C., Monstein C., Amara A., Refregier A., 2017a,
Astronomy and Computing, 18, 8

Akeret J., Chang C., Lucchi A., Refregier A., 2017b, Astronomy and
Computing, 18, 35

Andreev V. P., Rejtar T., Chen H-S., Moskovets E. V., Ivanov A. R., Karger
B. L., 2003, Analytical Chemistry, 75, 6314

Baek S-J., Park A., Ahn Y-J., Choo J., 2015, Analyst, 140, 250
Cobas J. C., Bernstein M. A., Martı́n-Pastor M., Tahoces P. G., 2006, Journal

of Magnetic Resonance, 183, 145
Eilers P. H. C., 2003, Analytical Chemistry, 75, 3631
Fridman P., 2008, AJ, 135, 1810
Jiang P. et al., 2020, Res. Astron. Astrophys., 20, 28
Jirasek A., Schulze G., Yu M., Blades M., Turner R., 2004, Applied

Spectroscopy, 58, 1488
Kerrigan J. et al., 2019, MNRAS, 488, 2605
Mosiane O., Oozeer N., Aniyan A., Bassett B. A., 2017, in Monebhurrun

V., ed., IEEE Radio and Antenna Days of the Indian Ocean, Materials
Science and Engineering Conference Series, Vol. 198. IOP Publishing,
Bristol, p. 012012

Offringa A., 2012, PhD thesis, University of Groningen
Offringa A., De Bruyn A., Biehl M., Zaroubi S., Bernardi G., Pandey V.,

2010, MNRAS, 405, 155
Offringa A., Van De Gronde J., Roerdink J., 2012, A&A, 539, A95
Peck L. W., Fenech D. M., 2013, Astronomy and Computing, 2, 54
Ramsay J. O., Silverman B. W., 2007, Applied Functional Data Analysis:

Methods and Case Studies. Springer, Berlin
Ransom S. M., 2001, PhD thesis, Harvard University
Schoemaker L., 2015, Master’s thesis, Vrije Universiteit Amsterdam
Shen C., Bao X., Tan J., Liu S., Liu Z., 2017, Optics Express, 25, 16235
van de Gronde J. J., Offringa A. R., Roerdink J. B., 2016, Journal of

Mathematical Imaging and Vision, 56, 455
Winkel B., Kerp J., Stanko S., 2007, Astronomische Nachrichten: Astronom-

ical Notes, 328, 68
Zhang Z., Chen S., Liang Y., Liu Z., Zhang Q., Ding L., Ye F., Zhou H., 2010,

Journal of Raman Spectroscopy, 41, 659
Zhao J., Zou X., Weng F., 2013, IEEE Transactions on Geoscience and

Remote Sensing, 51, 4830

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 500, 2969–2978 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/3/2969/6015985 by guest on 09 M
arch 2021

http://zmtt.bao.ac.cn/GPPS/RFI
http://zmtt.bao.ac.cn/GPPS/RFI
http://dx.doi.org/10.1016/j.ascom.2016.11.001
http://dx.doi.org/10.1016/j.ascom.2017.01.002
http://dx.doi.org/10.1039/C4AN01061B
http://dx.doi.org/10.1016/j.jmr.2006.07.013
http://dx.doi.org/10.1088/0004-6256/135/5/1810
http://dx.doi.org/10.1088/1674-4527/20/3/28
http://dx.doi.org/10.1366/0003702042641236
http://dx.doi.org/10.1093/mnras/stz1865
http://dx.doi.org/10.1111/j.1365-2966.2010.16471.x
http://dx.doi.org/10.1051/0004-6361/201118497
http://dx.doi.org/10.1016/j.ascom.2013.09.001
http://dx.doi.org/10.1364/OE.25.016235
http://dx.doi.org/10.1002/asna.200610661
http://dx.doi.org/10.1002/jrs.2500
http://dx.doi.org/10.1109/TGRS.2012.2230634

