Proposal Abstract:

We propose to utilize 70 hours of FAST observations to enhance our measurements of the longitude of the ascending node (Ω) for PSR J2222–0137 through the interstellar scintillation (ISS) technique. PSR J2222–0137 is a relativistic binary pulsar and one of the best laboratories to test gravity theories. With previous FAST observations, we detected one ISS arc from PSR J2222–0137 and measured the screen-to-pulsar distance, the longitude of the ascending node, and the velocity of the interstellar medium by modeling the arc curvature variations under an anisotropic scattering case. Since our measurement of Ω is entirely different from that given by VLBI, we propose to verify and improve Ω measures by utilizing more FAST observations. Additionally, further FAST observations are crucial for exploring the location and the anisotropic properties of the detected ionized scattering screen. The accurate determination of Ω is crucial for enhancing the precision of pulsar timing for PSR J2222–0137 and advancing its capability to test gravity. Measuring Ω through the ISS technique can also serve as a cross-validation for both timing and VLBI results.